
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 3, June-July, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 34

A Novel Superlative Flawless Solution A Novel Superlative Flawless Solution A Novel Superlative Flawless Solution A Novel Superlative Flawless Solution For For For For Load Load Load Load

Balancing Balancing Balancing Balancing In In In In Cloud ComputingCloud ComputingCloud ComputingCloud Computing

Durga.S
1
, Manikandan.M

2

 1PG Student, Department of Computer Science, Vidyaa Vikas College of Engineering and Technology

Tiruchengode, India

2Associate Professor, Department of Computer Science, Vidyaa Vikas College of Engineering and Technology

Tiruchengode, India

ABSTRACT

“Innovation is necessary to ride the inevitable tide of

change”.

The cloud is a futuristic platform that

provides dynamic resource pools, virtualization, and

high availability and enables the sharing, selection

and aggregation of geographically distributed

heterogeneous resources for solving large-scale

problems in science and engineering. Load Balancing

is an important aspect of cloud computing

environment in which the workload is evenly

distributed among set of servers. In this paper we

define an power-optimal operation regime and

attempting to maximize the number of servers

operating in this regime. Idle and lightly-loaded

servers are switched to one of the sleep states to save

energy. We propose power saving load balancing

application scaling algorithm to distribute the load

evenly and save energy.

Keywords:-load balancing, cloud computing,

application scaling, idle servers.

1. INTRODUCTION

 Cloud computing describes a data

processing infrastructure in which the application

software and often the data itself is stored

permanently not on your PC but rather a remote

server that’s connected to the Internet. As the name

suggests, the function of the cloud is to provide

individuals and small and mid-sized businesses

access to an array of powerful applications and

services through the internet and not concerned

about the basic underlying complexities involved in

delivering services. Cloud computing is an on

demand service in which shared resources,

information, software and other devices are

provided according to the clients requirement at

specific time. It’s a term which is generally used in

case of Internet. The whole Internet can be viewed

as a cloud. Cloud elasticity is the ability to use as

much resources as needed at any given time and

low cost, a user pays only for the resources it

consumes, represent solid incentives for many

organizations to migrate some of their

computational activities to a public cloud.

Load balancing is a process of reassigning

the total load to the individual nodes of the

collective system to make resource utilization

effective and to improve the response time of the

job, simultaneously removing a condition in which

some of the nodes are over loaded while some

others are under loaded. A load balancing

algorithm which is dynamic in nature does not

consider the previous state or behavior of the

system, that is, it depends on the present behavior

of the system. The goals of load balancing are to

improve the performance substantially, to have a

backup plan in case the system fails even partially,

to maintain the system stability, to accommodate

future modification in the system.

Fig 1: Load Balancing system in cloud computing

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 3, June-July, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 35

Scaling is the process of allocating

additional resources to a cloud application in

response to a request consistent with the Service

Level Agreement and a cloud user. We distinguish

two scaling modes, horizontal and vertical scaling.

Horizontal scaling is the most common mode of

scaling on a cloud; it is done by increasing the

number of Virtual Machines (VMs) when the load

of application. Vertical scaling keeps the number of

VMs of an application constant, but increases the

amount of resources allocated to each one of them.

This can be done either by migrating the VMs to

more powerful servers, or by keeping the VMs on

the same servers, but increasing their share of the

CPU time. This research work is based on

simulation technique and it uses the cloud

simulator, CloudSim.

2. EXISTING LOAD BALANCING

ALGORITHMS

 Virtual machine enables the abstraction of

an operating system and Application running on it

from the hardware. The interior hardware

infrastructure services interrelated to the Clouds are

modelled in the simulator by a Datacenter element

for handling service requests. These requests are

application elements sandboxed within Virtual

Machines, which need to be allocated a share of

processing power on Datacenter’s host

components. Data Center object manages the data

center management activities such as Virtual

Machine creation and destruction and does the

routing of user requests received from User Bases

via the Internet to the Virtual Machines. The Data

Center Controller, uses a Virtual Machine Load

Balancer to determine which Virtual Machine

should be assigned the next request for processing.

Most common Virtual machine load balancer are

throttled and active monitoring load balancing

algorithms.

I. Token Routing: This algorithm allows fast,

efficient routing decisions, without requiring

accurate knowledge of the complete global

state.The main objective of the algorithm is to

minimize the system cost by moving the tokens

around the system. But in a scalable cloud system

agents have no knowledge of their neighbours

working load distribution; therefore they have no

idea where to forward the tokens. To assist their

decisions, agents build their knowledge base. In

this algorithm, agents’ knowledge base is build

solely from the tokens previously received.

Therefore, no additional communication and

observation are required.

 II. Round Robin: In this algorithm, the processes

are divided between all processors. Each process

is assigned to the processor in a round robin order.

The process allocation order is maintained locally

independent of the allocations from remote

processors. Though the work load distributions

between processors are equal but the job

processing time for different processes are not

same. So at any point of time some nodes may be

heavily loaded and others remain idle. This

algorithm is mostly used in web servers where

Http requests are of similar nature and distributed

equally.

III. Randomized : In Randomized algorithm The

process allocation order is maintained for each

processor independent of allocation from remote

processor. .It is of type static in nature. In this

algorithm a process can be handled by a particular

node n with a probability p. This algorithm works

well in case of processes are of equal load.

However, problem arises when loads are of

different computational complexities. Randomized

algorithm does not maintain deterministic

approach. It works well when Round Robin

algorithm generates overhead for process queue.

IV. Central queuing: This algorithm works on the

principal of dynamic distribution. Each new

activity arriving at the queue manager is inserted

into the queue. When request for an activity is

received by the queue manager it removes the first

activity from the queue and sends it to the

requester. If no ready activity is present in the

queue the request is buffered, until a new activity is

available. But in case new activity comes to the

queue while there are unanswered requests in the

queue the first such request is removed from the

queue and new activity is assigned to it. When a

processor load falls under the threshold then the

local load manager sends a request for the new

activity to the central load manager. The central

manager then answers the request if ready activity

is found otherwise queues the request until new

activity arrives.

V. Connection mechanism: This algorithm is based

on the least number of connection mechanisms

which is a part of dynamic scheduling algorithm. It

needs to count the number of connections for each

server to estimate the load. The load balancer will

record the number of connections for each server.

The number of connection increases by one when a

new connection is dispatched to it while it

decreases the number by one when connection

finishes or timeout happens.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 3, June-July, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 36

VI. Throttled Load Balancer: Throttled algorithm is

completely based on virtual machine. It will find

the node for assigning the new task. In this client

first requesting the load balancer to check the right

virtual machine which access that load easily and

perform the operations which is give by the client

or user. In this algorithm the client first requests the

load balancer to find a suitable Virtual Machine to

perform the required operation.

3. PROPOSED LOAD BALANCING

ALGORITHMS

 Power saving load balancing algorithms is

proposed to ensure that the largest possible number

of active servers operate within the boundaries of

their respective optimal operating regime. The

actions implementing this policy are: (a) migrate

Virtual Machines from a server operating in the

undesirable-low regime and then switch the server

to a sleep state; (b) switch an idle server to a sleep

state and reactivate servers in a sleep state when the

cluster load increases; (c) migrate the VMs from an

overloaded server, a server operating in the

undesirable-high regime with applications

predicted to increase their demands for computing

in the next reallocation cycles.

The clustered organization is maintained

which allows us to accommodate some of the

desirable features of the strategies for server

consolidation. The cluster leader has relatively

accurate information about the cluster load and its

trends. The leader could use predictive algorithms

to initiate a gradual wake-up process for servers in

a deeper sleep state, C4 - C6, when the workload is

above a “high water mark" and the workload is

continually increasing. We set up the high water

mark at 80% of the capacity of active servers; a

threshold of 85% is used for deciding that a server

is overloaded. The leader could also choose to keep

a number of servers in C1 or C2 states because it

takes less energy and time to return to the C0 state

from these states. The energy management

component of the hypervisor can use only local

information to determine the regime of a server.

 Scaling decisions followed in our

proposed system are the Server Application

Manager SAMk is a component of the Virtual

Machine Monitor (VMM) of a server Sk. One of its

functions is to classify the applications based on

their processing power needs over a window of w

reallocation intervals in several categories: rapidly

increasing resource demands (RI), moderately

increasing (MI), stationary (S), moderately

decreasing (MD), and rapidly decreasing (RD).

This information is passed to the cloud leader

whenever there is the need to migrate the VM

running the application.

 SAMk interacts with the cluster leader and

with the application managers of servers accepting

the migration of an application currently running

on server Sk. A report sent to the cluster leader

includes the list of applications currently running

on Sk, their additional demands of over the last

reallocation cycle and over a window of w

reallocation intervals, and their classification as

RI/MI/S/MD/RD over the same window. The

scaling decisions are listed in the order of their

energy consumption, overhead, and complexity:

(1) Local decision - whenever possible, carry out

vertical application scaling using local resources.

(2) In-cluster, horizontal or vertical scaling -

migrate some of the VMs to the other servers

identified by the leader; wake-up some of the

servers in a sleep state or switch them to one of the

sleep states depending on the cluster workload.

(3) Inter-cluster scaling - when the leader

determines that the cluster operates at 80% of its

capacity with all servers running, the admission

control mechanism stops accepting new

applications. When the existing applications scale

up above 90% of the capacity with all servers

running then the cluster leader interacts with the

leaders of other clusters to satisfy the requests.

 The leader of a cluster maintains several

control structures. OptimalList - includes servers

operating in an optimal regime or those in

suboptimal regime projected to migrate back to the

optimal regime; the list is ordered in the increasing

order of computing power. Within a group of

servers with similar k, the servers are ordered in the

increasing order of available capacity. WatchList -

includes servers running in two suboptimal regime

and the undesirable-high regimes whose

applications are candidates for VM migration.

MigrationList - includes servers operating in

undesirable regimes. The leader selects candidates

for migration and identifies possible targets for

migration. SleepList - includes servers in one of the

sleep states; the list is ordered on the type of sleep

state and then in the increasing order of computing

power reflected by the constant k.

4. SIMULATORS

 The main aim of simulator is to test the

implementation work in the absence of the required

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 3, Issue 3, June-July, 2015
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 37

environment. Here we use CloudSim simulator. It

is the open source and a new generalized and

extensible simulation framework that enables

seamless modeling, simulation, experimentation of

emerging Cloud computing infrastructures and

management services.It implements generic

application provisioning techniques that can be

extended with ease and limited effort.

The simulation framework has the

following novel features: (i) support for modeling

and instantiation of large scale Cloud computing

infrastructure, including data centers on a single

physical computing node and java virtual machine;

(ii) a self-contained platform for modeling data

centers, service brokers, scheduling, and

allocations policies; (iii) availability of

virtualization engine, which aids in creation and

management of multiple, independent, and co-

hosted virtualized services on a data center node;

and (iv) flexibility to switch between space-shared

and time-shared allocation of processing cores to

virtualized services.

Figure 2: CloudSim Architecture

5. CONCLUSION

 Load Balancing is an essential task in

Cloud Computing environment to achieve

maximum utilization of resources. This paper aims

towards the establishment of performance

qualitative analysis on existing VM load balancing

algorithm and then implemented in CloudSim and

java language.Here we emphasis on the scheduling

of jobs for proper load balancing in virtual

machines and then putting the idle or unused

machines to sleep mode for better power

management. Thus we provide cloud elasticity and

save energy at low cost. Our future work will

evaluate the overhead and the limitations of the

algorithm proposed in this paper; it will also

include the implementation of a Server Application

Manager and the evaluation of the overhead for the

algorithm proposed in this paper.

6. REFERENCES

[1].Basic concept and terminology of cloud computing-

http://whatiscloud.com

[2].L. Wang, J. Tao, M. Kunze,”Scientific Cloud Computing:

Early Definition and Experience”, the 10th IEEE International

Conference Computing and Communications 2008.

[3].Load Balancing in Cloud computing,

http://community.citrix.com/display/cdn/Load+Balancing

[4].Martin Randles, Enas Odat, David Lamb, Osama Abu-

Rahmeh and A. Taleb-Bendiab, ”A Comparative Experiment in

Distributed Load Balancing”, 2009 Second International
Conference on Developments in eSystems Engineering.

[5].Ram Prasad Padhy , P Goutam Prasad Rao, "LOAD

BALANCING IN CLOUD COMPUTING SYSTEMS"

[6].Yi Zhao, Wenlong Huang, 2009 "Adaptive Distributed Load

Balancing Algorithm based on Live Migration of Virtual

Machines in Cloud" Fifth International Joint Conference on

INC, IMS and IDC.

[7].P.Jamuna,R.Anand, “Optimized Cloud Partitioning

Technique to Simplify Load Balancing”

[8].T. Kokilavani J.J. College of Engineering & Technology and

Research Scholar, Bharathiar University, Tamil Nadu, India”
Load Balanced Min-Min Algorithm for Static Meta-Task

Scheduling in Grid Computing” International Journal of

Computer Applications.

[9].P.Warstein, H.Situ and Z.Huang (2010), “Load balancing in

a cluster computer” In proceeding of the seventh International

Conference on Parallel and Distributed Computing,

Applications and Technologies, IEEE

[10].Jaspreet kaur / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622 Vol. 2,

Issue 3, May-Jun 2012, "Comparison of load balancing
algorithms in a Cloud".

